• 全国 [切换]
  • 二维码
    商易网

    扫一扫关注

    当前位置: 首页 » 资讯 » 行业资讯 » 正文

    工业大数据的搜集与分析是转型智能制造的关键

    放大字体  缩小字体 发布日期:2020-03-13 09:01:17    浏览次数:46    评论:0
    导读

    以工业4.0为核心的智能制造,已经成为目前全球制造业者共同发展的方向。有别于一般消费性市场需求,在工业生产制造领域的发展上

    以工业4.0为核心的智能制造,已经成为目前全球制造业者共同发展的方向。有别于一般消费性市场需求,在工业生产制造领域的发展上,不仅有强调以工业应用为主的工业人工智能,在数据数据的搜集上,自然也有所谓的工业大数据。做为工业人工智能的基础,怎样获取正确的工业大数据,也关系着制造业转型升级的成败。


    除了与一般大数据以强调数量(Volume)、速度(Velocity)、多样性(Variety),及真实性(Veracity)的“4V要素”之外,工业大数据还特别强调所谓的可见性(Visibility)及价值(Value)。对于大数据及工业大数据之间的差异,一般认为,数据的数量、获取的速度/频率、数据的多样性与真实性,是制造业在导入数字化与自动化之后,会自然演化出现的数据。但对于工业4.0或制造制造,要从设备制造端向使用者服务端的转型而言,可见性及价值,则代表了对工业大数据所追求的目的与意义。

    不过数字转型及产业升级的风潮,很多制造业者在着手进行往智能制造转型的过程中,是伴随着数字化与自动化同步进行,由于数字化与自动化之后,机台设备可以快速的产生大量数据,业者如果没有完整个规划或从事阶段性的建设,很容易在初期就走错方向。

    相关业者表示,一般的商业大数据可以在累积大量数据数据后,再固定或周期性的进行数据的处理与分析;但是智能制造要能创造价值,最佳的方式则是必须要将相关的工业大数据,就近的在机台设备端,进行实时的分析处理,并且执行反馈。同时,也需要将这些实时处理分析的结果进行视觉化的展示。

    业者表示,工业大数据与一般商业大数据的一项重要差异,就在于对于精准度的要求。对一般商业场域中应用的大数据及人工智能而言,准确率能达到90%左右,就已经将惊人,因为对消费者的年龄判别失准,或是推播了错误的广告,一般并不会造成太大的影响;不过,如果应用在工业生产领域,工业大数据结合工业人工智能被要求的准确度,可能是需要到99.9%甚至更高的准确率,因为一旦工业生产制造上的数据出现误差,对于产品后续生产各方面,都将带来难以估计的损失。

     
    (文/小编)
    打赏
    免责声明
    • 
    本文为小编原创作品,作者: 小编。欢迎转载,转载请注明原文出处:http://www.shangyi.com/news/show-16608.html 。本文仅代表作者个人观点,本站未对其内容进行核实,请读者仅做参考,如若文中涉及有违公德、触犯法律的内容,一经发现,立即删除,作者需自行承担相应责任。涉及到版权或其他问题,请及时联系我们。
    0相关评论
     

    (c)2008-2018 DESTOON B2B SYSTEM All Rights Reserved sitemaps

    鲁ICP备13017841号

    关键词:b2b电子商务平台 免费发布信息的平台 电子商务 B2B网站 免费B2B平台 B2B网上贸易 B2B信息平台


    免责申明:本站所有信息均由会员自由发布,本站不承担由于内容的合法性及真实性所引起的一切争议和法律责任。

    (c)2008-2018 DESTOON B2B SYSTEM All Rights Reserved sitemaps

    鲁ICP备13017841号 鲁公安备案号:37089702000221

    不良信息举报中心 可信网站验证用户服务平台 诚信网站 安全联盟 360平台