1)射线检测
射线检测就是利用射线(X射线、γ射线、中子射线等)穿过材料或工件时的强度衰减,检测其内部结构不连续性的技术。穿过材料或工件时的射线由于强度不同,在感光胶片上的感光程度也不同,由此生成内部不连续的图像。
射线检测主要应用于金属、非金属及其工件的内部缺陷的检测,检测结果准确度高、可靠性好。胶片可长期保存,可追溯性好,易于判定缺陷的性质及所处的平面位置。
射线检测也有其不足之处,难于判定缺陷在材料、工件内部的埋藏深度;对于垂直于材料、工件表面的线性缺陷(如:垂直裂纹、穿透性气孔等)易漏判或误判;同时射线检测需严密保护措施,以防射线对人体造成伤害;检测设备复杂,成本高。
射线检测只适用于材料、工件的平面检测,对于异型件及T型焊缝、角焊缝等检测就无能为力了。
(2)超声波检测
超声波检测就是利用超声波在金属、非金属材料及其工件中传播时,材料(工件)的声学特性和内部组织的变化对超声波的传播产生一定的影响,通过对超声波受影响程度和状况的探测了解材料(工件)性能和结构变化的技术。
超声波检测和射线检测一样,主要用于检测材料(工件)的内部缺陷。检测灵敏度高、操作方便、检测速度快、成本低且对人体无伤害,但超声波检测无法判定缺陷的性质;检测结果无原始记录,可追溯性差。
超声波检测同样也具有着射线检测无法比拟的优势,它可对异型构件、角焊缝、T型焊缝等复杂构件的检测;同时,也可检测出缺陷在材料(工件)中的埋藏深度。
(3)磁粉检测
磁粉检测是利用漏磁和合适的检测介质发现材料(工件)表面和近表面的不连续性的。
磁粉检测作为表面检测具有操作灵活、成本低的特点,但磁粉检测只能应用于铁磁性材料、工件(碳钢、普通合金钢等)的表面或近表面缺陷的检测,对于非磁性材料、工件(如:不锈钢、铜等)的缺陷就无法检测。
磁粉检测和超声波检测一样,检测结果无原始记录,可追溯性差,无法检测到材料、工件深度缺陷,但不受材料、工件形状的限制。