可控硅晶闸管KP6 300-8 KP6 300-10
1)S3900MF的VTR<0.8V,宜选R×1档测量。
(2)若再用读取电流法求出ITR值,还可以绘制反向伏安特性。
①一般小功率晶闸管不需加散热片,但应远离发热元件,如大功率电阻、大功率三极管以及电源变压器等。对于大功率晶闸管,必须按手册申的要求加装散热装置及冷却条件,管子工作时的温度不超过结温。
②晶闸管在使用中发生超越和短路现象时,会引发过电流将管子烧毁。对于过电流,一般可在交流电源中加装快速保险丝加以保护。快速保险丝的熔断时间极短,一般保险丝的额定电流用晶闸管额定平均电流的1.5倍来选择。
③交流电源在接通与断开时,有可能在晶闸管的导通或阻断对出现过压现象,将管子击穿。对于过电压,可采用并联RC吸收电路的方法。因为电容两端的电压不能突变,所以只要在晶闸管的阴极及阳极间并取RC电路,就可以削弱电源瞬间出现的过电压,起到保护晶闸管的作用。当然也可以采用压敏电阻过压保护元件进行过压保护。
如何保护晶闸管编辑
晶闸管在工业中的应用越来越广泛,随着行业的应用范围增大。晶闸管的作用也越来越全面。但是有时候,晶闸管在使用过程中会造成一些伤害。为了晶闸管的寿命,我们该如何更好地区保护晶闸管呢?
在使用过程中,晶闸管对过电压是很敏感的。过电流同样对晶闸管有极大的损坏作用。西安瑞新公司给大家介绍晶闸管的保护方法,具体如下:
1、 过电压保护
晶闸管对过电压很敏感,当正向电压超过其断态重复峰值电压UDRM一定值时晶闸管就会误导通,引发电路故障;当外加反向电压超过其反向重复峰值电压URRM一定值时,晶闸管就会立即损坏。因此,必须研究过电压的产生原因及抑制过电压的方法。
过电压产生的原因主要是供给的电功率或系统的储能发生了激烈的变化,使得系统来不及转换,或者系统中原来积聚的电磁能量来不及消散而造成的。主要发现为雷击等外来冲击引起的过电压和开关的开闭引起的冲击电压两种类型。由雷击或高压断路器动作等产生的过电压是几微秒至几毫秒的电压尖峰,对晶闸管是很危险的。由开关的开闭引起的冲击电压又分为如下几类:
(1)交流电源接通、断开产生的过电压
例如,交流开关的开闭、交流侧熔断器的熔断等引起的过电压,这些过电压由于变压器绕组的分布电容、漏抗造成的谐振回路、电容分压等使过电压数值为正常值的 2至10多倍。一般地,开闭速度越快过电压越高,在空载情况下断开回路将会有更高的过电压。
(2)直流侧产生的过电压
如切断回路的电感较大或者切断时的电流值较大,都会产生比较大的过电压。这种情况常出现于切除负载、正在导通的晶闸管开路或是快速熔断器熔体烧断等原因引起电流突变等场合。
(3)换相冲击电压
包括换相过电压和换相振荡过电压。换相过电压是由于晶闸管的电流降为0时器件内部各结层残存载流子复合所产生的,所以又叫载流子积蓄效应引起的过电压。换相过电压之后,出现换相振荡过电压,它是由于电感、电容形成共振产生的振荡电压,其值和换相结束后的反向电压有关。反向电压越高,换相振荡过电压也越大。
针对形成过电压的不同原因,可以采取不同的抑制方法,如减少过电压源,并使过电压幅值衰减;抑制过电压能量上升的速率,延缓已产生能量的消散速度,增加其消散的途径;采用电子线路进行保护等。常用的是在回路中接入吸收能量的元件,使能量得以消散,常称之为吸收回路或缓冲电路。
(4)阻容吸收回路
通常过电压均具有较高的频率,因此常用电容作为吸收元件,为防止振荡,常加阻尼电阻,构成阻容吸收回路。阻容吸收回路可接在电路的交流侧、直流侧,或并接在晶闸管的阳极和阴极之间。吸收电路选用无感电容,接线应尽量短。
(5)由硒堆及压敏电阻等非线性元件组成吸收回路
上述阻容吸收回路的时间常数RC是固定的,有时对时间短、峰值高、能量大的过电压来不及放电,抑制过电压的效果较差。因此,一般在变流装置的进出线端还并有硒堆或压敏电阻等非线性元件。硒堆的特点是其动作电压和温度有关,温度越低耐压越高;另外是硒堆具有自恢复特性,能多次使用,当过电压动作后硒基片上的灼伤孔被溶化的硒重新覆盖,又重新恢复其工作特性。压敏电阻是以氧化锌为基体的金属氧化物非线性电阻,其结构为两个电极,电极之间填充的粒径为 10~50μm的不规则的ZNO微结晶,结晶粒间是厚约1μm的氧化铋粒界层。这个粒界层在正常电压下呈高阻状态,只有很小的漏电流,其值小于 100μA。当加上电压时,引起了电子雪崩,粒界层迅速变成低阻抗,电流迅速增加,泄漏了能量,抑制了过电压,从而使晶闸管得到保护。浪涌过后,粒界层又恢复为高阻态。压敏电阻的特性主要由下面几个参数来表示。
标称电压:指压敏电阻流过1mA直流电流时,其两端的电压值。
通流容量:是用前沿8微秒、波宽20微秒的波形冲击电流,每隔5分钟冲击1次,共冲击10次,标称电压变化在-10[[[%]]]以内的冲击电流值来表示。
因为正常的压敏电阻粒界层只有一定大小的放电容量和放电次数,标称电压值不仅会随着放电次数增多而下降,而且也随着放电电流幅值的增大而下降,当大到某一电流时,标称电压下降到0,压敏电阻出现穿孔,甚至炸裂;因此必须限定通流容量。
漏电流:指加一半标称直流电压时测得的流过压敏电阻的电流。
由于压敏电阻的通流容量大,残压低,抑制过电压能力强;平时漏电流小,放电后不会有续流,元件的标称电压等级多,便于用户选择;伏安特性是对称的,可用于交、直流或正负浪涌;因此用途较广。
2、 过电流保护
由于半导体器件体积小、热容量小,特别像晶闸管这类高电压大电流的功率器件,结温必须受到严格的控制,否则将遭至彻底损坏。当晶闸管中流过大于额定值的电流时,热量来不及散发,使得结温迅速升高,将导致结层被烧坏。
产生过电流的原因是多种多样的,例如,变流装置本身晶闸管损坏,触发电路发生故障,控制系统发生故障等,以及交流电源电压过高、过低或缺相,负载过载或短路,相邻设备故障影响等。
晶闸管过电流保护方法常用的是快速熔断器。由于普通熔断器的熔断特性动作太慢,在熔断器尚未熔断之前晶闸管已被烧坏;所以不能用来保护晶闸管。快速熔断器由银制熔丝埋于石英沙内,熔断时间极短,可以用来保护晶闸管。快速熔断器的性能主要有以下几项表征。
KP4 900-42
KP4 1200-24
KP4 1200-26
KP4 1200-28
KP4 1200-30
KP4 1200-32
KP4 1200-34
KP4 1400-20
KP4 1400-22
KP4 1400-24
KK4 1500-16
KK4 1500-18
KP4 1700-12
KP4 1700-14
KP4 1700-16
KP4 1700-18
KP4 1800-6
KP4 1800-8
KP4 1800-10
KP4 1800-12
KP4 1800-14
KP5 400-16
KP5 400-18
KP5 400-20
KP5 400-22
KP5 400-24
KP5 400-26
KP5 400-28
KP5 400-30
KP5 400-32
KP5 400-34
KP5 500-6
KP5 500-8
KP5 500-10
KP5 500-12
KP5 500-14
KP5 500-16
KP5 500-18
KP5 500-20
KP5 500-22
KP5 500-24
KP5 600-6
KP5 600-8
KP5 600-10
KP5 600-12
KP5 600-14
KP5 600-16
KP5 600-18
KP5 700-6
KP5 700-8
KP5 700-12
KP5 700-14
KP5 400-26
KP5 400-30
KP5 400-32
KP5 400-34
KP5 700-10
KP5 700-12
KP6 200-16
KP6 200-18
KP6 200-20
KP6 200-22
KP6 200-24
KP6 200-26
KP6 200-28
KP6 200-30
KP6 200-32
KP6 200-34
KP6 300-6
KP6 300-8
KP6 300-10
KP6 300-12
KP6 300-14
KP6 300-16
KP6 300-18
KP6 400-6
KP6 400-8
KP6 400-10
KP6 400-12
KP6 400-14
KP7 400-16
KP7 400-18
KP7 400-20
KP7 400-22
KP7 400-24
KP7 400-26
KP7 400-28
KP7 400-30
KP7 400-32
KP7 400-34
KP7 500-16
KP7 500-18
KP7 500-20
KP7 500-22
KP7 500-24
KP7 500-26
KP7 500-28
KP7 500-30
KP7 500-32
KP7 500-34
KP7 600-6
KP7 600-8
KP7 600-10
KP7 600-12
KP7 600-14
KP7 600-16
KP7 600-18
KP7 600-20
KP7 600-22
KP7 600-24
KP7 700-6
KP7 700-8
KP7 700-10
KP7 700-12
KP7 700-14
KP7 700-16
KP7 700-18
KP7 800-6
KP7 800-8
KP7 800-10
KP7 800-12
KP7 800-14
KP7 900-6
KP7 900-8
KP7 900-10
KP7 900-12
KP8 300-55
KP8 300-60
KP8 300-65
KP8 400-24
KP8 400-26
KP8 400-28
KP8 400-30
KP8 400-32
KP8 400-34
KP8 400-36