下面我们从现代数控系统的基本构成入手,探讨数控系统的诊断与维修。
1 数控系统的构成与特点
目前世界上的数控系统种类繁多,形式各异,组成结构上都有各自的特点。这些结构特点来源于系统初始设计的基本要求和工程设计的思路。例如对点位控制系统和连续轨迹控制系统就有截然不同的要求。对于T系统和M系统,同样也有很大的区别,前者适用于回转体零件加工,后者适合于异形非回转体的零件加工。对于不同的生产厂家来说,基于历史发展因素以及各自因地而异的复杂因素的影响,在设计思想上也可能各有千秋。例如,美国Dynapath系统采用小板结构,便于板子更换和灵活结合,而日本FANUC系统则趋向大板结构,使之有利于系统工作的可靠性,促使系统的平均无故障率不断提高。然而无论哪种系统,它们的基本原理和构成是十分相似的。一般整个数控系统由三大部分组成,即控制系统,伺服系统和位置测量系统。控制系统按加工工件程序进行插补运算,发出控制指令到伺服驱动系统;伺服驱动系统将控制指令放大,由伺服电机驱动机械按要求运动;测量系统检测机械的运动位置或速度,并反馈到控制系统,来修正控制指令。这三部分有机结合,组成完整的闭环控制的数控系统。控制系统主要由总线、CPU、电源、存贮器、操作面板和显示屏、位控单元、可编程序控制器逻辑控制单元以及数据输入/输出接口等组成。最新一代的数控系统还包括一个通讯单元,它可完成CNC、PLC的内部数据通讯和外部高次网络的连接。伺服驱动系统主要包括伺服驱动装置和电机。位置测量系统主要是采用长光栅或圆光栅的增量式位移编码器。数控系统的主要特点是:可靠性要求高:因为一旦数控系统发生故障,即造成巨大经济损失;有较高的环境适应能力,因为数控系统一般为工业控制机,其工作环境为车间环境,要求它具有在震动,高温,潮湿以及各种工业干扰源的环境条件下工作的能力;接口电路复杂,数控系统要与各种数控设备及外部设备相配套,要随时处理生产过程中的各种情况,适应设备的各种工艺要求,因而接口电路复杂,而且工作频繁。为适应国际金融危机以来市场需求变化,许多企业加大了产品结构的调整力度,大力压缩低档、普通产品生产;对经济型数控机床进行升级换代;着力发展全功能数控车床、数控镗床、加工中心、数控磨床、数控齿轮加工机床、重型机床、复合机床等中高档产“从全行业看,2009年机床工具产品结构变化的最大特点是低档、大路货产品生产少了,大型机床,含金量高的、档次比较高的、技术复杂程度比较高的产品越来越多。”吴柏林介绍说,2009年,一些机床企业厂内摆放的产品与2008年已经截然不同,过去大批生产小型普通机床的场面再也看不到了,但是厂房也并未闲置着,工人都忙着生产档次比较高的数控车床、全功能数控车床、普及型中档立卧加工中心、规模比较大的镗铣加工中心、卧式加工中心等。