改性纤维球滤料
郑州改性纤维球滤料 http://www.hsjscl.com/lvliao/26.html
天然锰砂滤料与无阀滤池除铁锰工艺选择及设计方法
一、除铁锰工艺选择及设计
1.1除铁除锰处理工艺流程
根据除铁锰基理及我国多年的实验和生产实践,地下水除锰工艺大多采用曝气接触氧化法。一般采用跌水、淋水、射流曝气、压缩空气、接触式曝气塔、机械通风曝气塔等曝气装置;过滤装置可分为压力式和重力式两种形式,压力式过滤形式以压力过滤器为主,滤料分为天然锰砂滤料和纤维滤料;重力过滤形式以滤池为主,常用的滤池形式有普通快滤池、无阀滤池等,滤料为天然锰砂滤料。
由于原水含铁、锰指标分别为9.0mg/l、1.5mg/l,铁锰超标严重,本设计根据原水水质采用重力式机械通风接触式曝气塔+重力式无阀过滤器二级除铁、锰工艺,其工艺流程为:
1.2工艺设计及参数
1.12曝气塔
曝气塔采用机械通风接触式曝气塔,曝气填料采用活化无毒多面空心球双层布置。水源井来水从塔的上端均匀配水进入塔体,通过双层空心球尽可能与填料接触,填料下设置离心轴流风机由下至上向塔内充氧,达到对原水进行充分曝气的作用。曝气塔设计表面负荷为25m3/m2.h,直径为φ3000,单台产水量为175 m3/h,配套4-72-4型离心风机(Q=9750-14750 m3/,H=324-224mm,N=7.5KW)。由于水量规模的变化,设计由原来四台更改为2台。
曝气塔结构图
1.2.2无阀过滤器
锰砂除铁除锰过滤装置采用无阀过滤器,由于原水铁锰含量较高,设计采用二级串联除铁锰工艺,原水经曝气塔充分曝气后重力进入一级除铁过滤器,经一级处理后进入中间水池,经中间水池提升泵进入二级除锰过滤器。两级过滤采用同型号无阀过滤器,滤料为连云港产的天然锰砂,三台过滤器为一组,两工一备,反冲洗实现水力自动反冲并辅助压缩空气冲洗。
锰砂除铁除锰无阀过滤器结构图
净水车间共设无阀过滤器二组共6台,除铁除锰各一组3台,单台直径为φ4700,每组产水量为320 m3/h,滤速为10m/h,锰砂滤料层厚为900mm,终期水头损失为1.70m,反冲洗强度为18L/s.m2,气冲洗强度为15L/ m2.s,配套Q=20 m3/min,H=6m鼓风机,水冲洗历时为5min,气冲历时为2min。
1.2.3反冲洗水处理系统
为避免水资源的浪费,防止高浓度含铁、锰废水进入矿区污水系统,影响污水处理厂的正常运行,本设计对反冲洗水进行了收集和处理。净水车间外设置V=400 m3生产废水池,内设HJ-1600混合搅拌机四台,防止污泥沉淀,内设WQX50-8-2.2(Q=25m3/h,H=8m,N=2.2Kw)型潜水排污泵二台将污泥提升至净水车间内混凝反应池(1.5m×1.5m×1.4m),反应池设置两座,一工一备,各设WQX50-8-2.2型潜水排污泵及反应搅拌机一台,污泥通过提升进入竖流沉淀器,污泥处理系统设置φ3600竖流沉淀器两座,沉淀时间为1.5h,设计表面负荷为0.0007m/s,污泥经沉淀器分离后,清水回流至中间水池,污泥进入污泥浓缩池,经污泥分级浓缩后提升至DYL-500型带式压滤机压滤后泥饼外运。设置加药装置一套,药剂为聚丙烯酰胺。
二、除铁除锰工艺设计特点;
2.1无阀过滤器用于地下水除铁、锰处理的技术改进无阀过滤器属于小阻力配水系统,反冲洗压力很难保证,在国内除铁、锰工艺选择中一般选择双阀或普通快滤池作为终端处理构筑物,本设计的设计能力为Q=13000m3/d中小型水厂,水质为铁、锰含量较高的地下水,采用设备化的无阀过滤器在工艺选择上确实有相当的风险。针对上述问题,本设计对无阀过滤器采取了以下措施:
①.为防止铁离子穿透一级除铁滤层,将传统的700mm锰砂滤料层加厚至900mm;
②.为防止锰砂滤料板结,在承托层的上方布置了丰字型气体反冲洗管,反冲洗时进行气水防冲;
③.由于设计规模变化,原一、二级除铁、锰各设两组无阀过滤器,本设计改变无阀过滤器两台一组的习惯,设三台过滤为一组,除铁除锰各一组,通过过滤器水箱连通管阀门切换,三台过滤器可任意两台并联工作,当一台设备出现滤料板结时,保留三台同时工作的可能,为设备检修、更换锰砂滤料、实现强制反冲提供了设计上的保证;
④.为实际运行管理方便,本设计在过滤器本体上设置了监视玻璃透镜和罐内液位显示装置,在操作中能明确观察每台设备的运行状态,清晰的观察到反冲洗的形成和结束及效果,实现了科学管理。无阀过滤器进行了上述改进,实现了气水反冲、过滤装置的交替使用,有效的解决了重力式无阀过滤器自身的缺点,工程2001年9月验收移交以来,过滤效果良好,实现了自动反冲洗,反冲洗周期为12-48小时,出水水质铁、锰指标分别为0.15mg/l、0.07mg/l,完全符合国家生活饮用水铁、锰0.3mg/l、0.1mg/l的水质标准,达到了设计要求。
2.2竖流沉淀器排泥设计改进;
竖流沉淀器用于污泥处理系统的泥水分离,常规设计泥斗设在地下,排泥采用侧向静
压排泥,由于铁锰泥的自身特点,将泥斗设于地下极易造成污泥板结,清理有十分困难。本设计将该处理装置完全设于地面上,排泥通过泥斗下方的排空、排泥管进行排泥,打破了常规设计的排泥方式,解决了维修、清理的实际困难,运行效果良好。
三、工艺设计体会
3.1设计中应注意的几个问题:
3.1.1系统超越管道的设置含铁、锰地下水给水工程一般均由水源地、加压站、输水管道、净配水厂等工程组成,
由于输水管道在施工竣工后必须进行清洗,管道清洗废水含有大量泥砂,进入处理系统势必造成滤料的堵塞甚至报废。因此在净、配水厂的设计中必须考虑进入系统前的超越。
3.1.2系统动力设备的匹配;
对于铁、锰含量高而采用重力式二级串联处理工艺的设计,必须注意水源井泵(加压站泵)与中间水池提升泵的流量匹配,否则系统很难保证连续运行。
3.1.3曝气塔风机的安装位置;
曝气塔风机吸风口的安装必须高于底层填料布风管标高,否则当风机事故停机时会造成水的回灌而损坏风机、造成跑水事故。
3.14水封井的加高
无阀过滤器水封井设计上缘一般与地面相平,由于反冲洗瞬时流量及强度很大,极易造成冲洗水溅出水封井,本工程在试运中曾多次发生冒水现象,因此在设计中应充分考虑这一点。
3.2设计中仍需解决的问题
3.2.1主工艺系统出水水质的检测
由于铁、锰等重金属的化验周期较长,运行中只能根据反冲洗周期的变化预测出水水质是否恶化,而通过周期法只能定性的作出分析判断,具有明显的滞后性,不利于出水水质的保证。如何快速定量的对出水水质作出分析判断是除铁、锰处理厂设计面临的课题。
3.2.3污泥处理系统的监测运行; 本设计污泥处理系统的竖流沉淀器及污泥浓缩池无法实现泥水液面分离监测,即在实际操作中无法观测到沉淀器、污泥浓缩池内分层液面,致使很难准确的控制沉淀器的排泥时间,无法根据浓缩池内分层情况进行分级浓缩。如何有效的检测泥水分离液面位置,实现科学管理与运行是污泥处理面临的难题。