4J33膨胀合金
一、4J33概述
4J33是结合我国的陶瓷特点研制的陶瓷封接合金。合金在-60℃~600℃温度范围内具有与95%Al2O3陶瓷相近的线膨胀系数。主要用于和陶瓷进行匹配封接,是电真空工业中重要的封接结构材料。
1.1 4J33材料牌号 4J33。
1.2 4J33相近牌号 见表1-1。
表1-1
俄罗斯 |
美国 |
日本 |
德国 |
33HК(Ni33Co17) |
- |
KV-4(Ni33Co17) |
- |
1.3 4J33材料的技术标准 YB/T 5234-1993《瓷封合金4J33、4J34技术条件》。
1.4 4J33化学成分 见表1-2。
表1-2%
C |
Mn |
Si |
P |
S |
Ni |
Co |
Fe |
≤ |
|||||||
0.05 |
0.50 |
0.30 |
0.020 |
0.020 |
32.0~33.6 |
14.0~15.2 |
余量 |
在平均线膨胀系数达到标准规定条件下,允许镍、钴含量偏离表1-2规定范围。
1.5 4J33热处理制度 标准规定的膨胀系数及低温组织稳定性的性能检验试样,在保护气氛或真空中加热到900℃±20℃,保温1h,以不大于5℃/min速度冷至200℃以下出炉。
1.6 4J33品种规格与供应状态,驹寻可供品种有丝、管、板、带和棒材。
1.7 4J33熔炼与铸造工艺 用非真空感应炉、真空感应炉或电弧炉熔炼。
1.8 4J33应用概况与特殊要求 该合金经航空工厂长期使用,性能稳定。主要用于电真空元件与Al2O3陶瓷封接。制造大型电子管和磁控管的电极、引出盘和引出线。在使用中应使选用的陶瓷与合金的膨胀系数相匹配。当选用合金时,应根据使用温度严格检验低温组织稳定性。在加工过程中应进行适当的热处理,以保证材料具有良好的深冲引伸性能。当使用锻材时应严格检验其气密性。
二、4J33物理及化学性能
2.1 4J33热性能
2.1.1 4J33熔化温度范围 该合金溶化温度约为1450℃。
2.1.2 4J33热导率 4J33合金热导率λ=17.6W/(m•℃)。
2.1.3 4J33线膨胀系数 标准规定的合金平均线膨胀系数见表2-1。
该合金的平均线膨胀系数见表2-2。4J33合金的膨胀曲线见图2-1。
图2-1 表2-2
/10-6℃-1 |
|
/10-6℃-1 |
|||||
20~400℃ |
20~500℃ |
20~600℃ |
20~300℃ |
20~400℃ |
20~500℃ |
20~600℃ |
|
6.0~6.8 |
6.6~7.4 |
- |
6.3 |
6.1 |
6.9 |
8.3 |
2.2 4J33密度 ρ=8.27g/cm3。
2.3 4J33电性能
2.3.1 4J33电阻率 ρ=0.46μΩ·m。
2.3.2 4J33电阻温度系数 见表2-4。
表2-4
温度范围/℃ |
20~100 |
20~200 |
20~300 |
20~400 |
20~500 |
αR/10-3℃-1 |
4.2 |
4.1 |
3.9 |
3.6 |
3.2 |
2.4 4J33磁性能
2.4.1 4J33居里点 Tc=440℃。
2.4.2 4J33合金的磁性能 见表2-6。
表2-6
H/(A/m) |
B/T |
H/(A/m) |
B/T |
8 |
1.0×10-2 |
160 |
0.89 |
16 |
2.2×10-2 |
400 |
1.19 |
24 |
3.9×10-2 |
800 |
1.35 |
40 |
9.1×10-2 |
2000 |
1.49 |
80 |
0.47 |
4000 |
1.61 |
在4000A/m下,剩余磁感应强度Br=1.06T,矫顽力Hc=63.2A/m。
2.5 4J33化学性能 该合金在大气、淡水和海水中具有较好的耐腐蚀性。
三、4J33力学性能
3.1 4J33技术标准规定的性能
3.1.1 4J33硬度 深冲态带材的硬度应符合表3-1的规定。厚度不大于0.2mm的带材不做硬度检验。
表3-1
状态 |
δ/mm |
HV |
深冲态 |
>2.5 |
≤170 |
≤2.5 |
≤165 |
3.1.2 4J33抗拉强度 丝材和带材的抗拉强度应符合表3-2的规定。
表3-2
状态代号 |
状态 |
σb/MPa |
|
丝材 |
带材 |
||
R |
软态 |
<585 |
<570 |
Y |
硬态 |
>860 |
>700 |
3.2 4J33室温及各种温度下的力学性能
3.2.1 4J33硬度 合金带材(退火态)硬度见表3-3。
3.2.2 4J33拉伸性能 合金(退火态)在室温的拉伸性能见表3-3。
表3-3
σb/MPa |
σP0.2/MPa |
δ/% |
HV |
539 |
343 |
32 |
158 |
3.3 4J33持久和蠕变性能
3.4 4J33疲劳性能
3.5 4J33弹性性能 弹性模量E=139GPa。
四、4J33组织结构
4.1 4J33相变温度 4J34合金 γ→α相变温度在-80℃以下。4J33较4J34组织稳定。
4.2 4J33时间-温度-组织转变曲线
4.3 4J33合金组织结构 该合金的组织为单相奥氏体。按1.5规定的热处理制度处理后,4J34再经-78.5℃下冷冻,不应出现马氏体组织。
当合金成分不当时,在常温或低温下将发生不同程度的奥氏体(γ)向针状马氏体(α)转变。相变时伴随着体积膨胀效应。合金的膨胀系数相应增高,致使封接件的内应力剧增,甚至造成部分损坏。影响合金低温组织稳定性的主要因素是合金的化学成分。从Fe-Ni-Co三元相图中可以看到,镍是稳定奥氏体(γ)相的主要元素,镍含量偏高有利于γ相的稳定。随合金总变形率增加其组织愈趋向稳定。合金的成分偏析也可能造成局部区域的γ→α相变。此外,晶粒粗大也会促进γ→α相变。
4.4 4J33晶粒度 标准规定,深冲态带材的晶粒度应不小于7级,小于7级的晶粒不得超过面积的10%。对厚度小于0.13mm的带材,估计平均晶粒度时,沿带材厚度方向晶粒个数应不少于8个。
冷应变率为60%~70%的1mm厚4J33带材,在表4-1所示温度下退火,空冷后,按YB 027-1992附录A进行晶粒度评级,结果见表4-1。
表4-1
退火温度/℃ |
600 |
650 |
700 |
750 |
800 |
900 |
1000 |
1100 |
1200 |
晶粒度级别 |
开始再结晶 |
>10 |
>10 |
10 |
10 |
8.0 |
6.5 |
5.0 |
4.0 |
五、4J33工艺性能与要求
5.1 4J33成形性能 该合金具有良好的冷、热加工性能,可制成各种复杂形状的零件。但应避免在含硫的气氛中加热。在冷加工时,带材的冷应变率大于70%,退火后会引起塑性各向异性。应变率在10%~15%内,合金在退火时会导致晶粒急剧长大,也将产生合金的塑性各向异性。当终应变率为60%~65%,晶粒度7~8.5级时,其塑性各向异性小。
5.2 4J33焊接性能 该合金可采用钎焊、熔焊、电阻焊等方法与铜、钢、镍等金属焊接。当合金中锆含量大于0.06%时,将影响板材的氩弧焊焊接质量,甚至使焊缝开裂。
该合金的零件在与陶瓷封接前,应进行退火、清洗、镀镍,然后与金属化后再镀镍的陶瓷件用银焊封接。
5.3 4J33零件热处理工艺 热处理可分为:消除应力退火、中间退火。
(1)消除应力退火 为消除零件在机械加工后的残存应力,要进行消除应力退火:470~540℃,保温1~2h,炉冷或空冷。
(2)中间退火 为消除合金在冷轧、冷拔、冷冲压过程引起的加工硬化现象,以利于继续加工。工件需在干氢、分解氨或真空中加热到750~900℃,保温15min~1h,然后炉冷、空冷或水淬。
该合金不能用热处理硬化。
5.4 4J33表面处理工艺 表面处理可用喷砂、抛光、酸洗。该合金具有良好的电镀性能,表面能镀金、银、镍、铬等金属。